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1. Introduction

A better understanding of the three-dimensional superconformal field theory that arises on

multiple membranes in flat space is an important outstanding issue in M-theory. Building

on earlier work [1, 2], an interesting Lagrangian description of a maximally supersymmetric

conformal field theory in three dimensions was constructed in [3 – 5] which has been further

studied in [6]–[19]. The construction relies on an algebra with a skew triple product whose

structure constants fµ1µ2µ3
ν = f [µ1µ2µ3]

ν satisfy

fµ1µ2µ3
νf

µ4µ5ν
µ6

= 3fµ4µ5[µ1
νf

µ2µ3]ν
µ6

(1.1)

or equivalently

f [µ1µ2µ3
νf

µ4]µ5ν
µ6

= 0 . (1.2)

The construction of the Lagrangian requires a compatible metric and, after raising an

index on f using this metric, f is totally antisymmetric fµ1µ2µ3µ4 = f [µ1µ2µ3µ4]. Since the

metric appears in the kinetic terms of the Lagrangian, it is natural to demand that the

metric is positive definite. In this case, after a suitable change of basis, we can assume

that the metric is simply δµν . The basic non-trivial solution [5] corresponds to a four

dimensional algebra with fµ1µ2µ3µ4 = ǫµ1µ2µ3µ4 . One can also consider direct sums of this

basic example, but this simply leads to three-dimensional supersymmetric field theories

which are non-interacting copies of the basic example.

We started this work by trying to construct additional solutions to (1.2) with totally

antisymmetric f . However, as also noticed by others, obvious generalisations fail and

simple computer searches are fruitless. It has also been shown [20] that in up to seven

dimensions, a 4-form whose components satisfy (1.2) must be proportional to dx1234 (in

some appropriately chosen co-ordinates), and in eight dimensions, the solution is a linear

combination dx1234 and dx5678.

Here we will prove the general result, that all solutions of (1.2), in any dimension, can be

written as a linear combination 4-forms, each of which is the wedge product of four 1-forms,

which are all mutually orthogonal. This then proves conjectures made in [20] and [16].
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Note added. Concurrent with the posting of this work to the ArXive, a proof of this

result also appeared in [21]. After this paper was submitted for publication, we became

aware of [22], which claims the same result using a different approach.

2. Analysis

We are interested in solutions to (1.2) for totally anti-symmetric and real f with indices

raised and lowered using the metric δµν . Let us assume that we have a D + 1 dimensional

algebra and write the indices as µ = (q,D + 1) where q = 1, . . . ,D. We can write

f = dxD+1 ∧ ψ + φ (2.1)

where ψ is a 3-form on R
D, and φ is a 4-form on R

D. We can demand that ψ 6= 0 (otherwise

we end up in D dimensions). The constraint (1.2) is equivalent to

φ[q1q2q3
mφ

q4]q5q6m + ψ[q1q2q3ψq4]q5q6 = 0 (2.2)

qφ[q1q2q3
mψ

q4]q5m = 0 (2.3)

φq1q2q3
mψ

q4q5m − 3ψ[q1q2
mφ

q3]q4q5m = 0 (2.4)

ψ[q1q2
mψ

q3]q4m = 0 (2.5)

where indices on ψ, φ are raised/lowered with δmn. Observe that (2.5) is the Jacobi identity.

This identity implies that ψmn
p are the structure constants of a Lie algebra L. The Killing

form of this Lie algebra has components

κmn = ψmℓ
pψnp

ℓ . (2.6)

As ψ is totally antisymmetric, note that κ is negative semi-definite. There are two possi-

bilities: κ is non-degenerate and L is semi-simple or κ is degenerate.

Suppose that L is semi-simple. By making a SO(D) rotation, one can diagonalize the

Killing form and set

κmn = −λnδmn (2.7)

(no sum over n), and λn > 0 for all n.

On the other hand if κ is degenerate, then L = u(1)p ⊕ L′ where p > 0 and L is

semi-simple. To see this we first note that Xmκmn = 0 for some non-zero vector Xn. Then

it follows that

XmXnψmpqψn
pq = 0 (2.8)

which implies that Xnψnpq = 0. Without loss of generality, one can make an SO(D)

rotation so that the only non-vanishing component of Xn is X1 and then ψ1mn = 0 for all

m,n, and κ1m = 0 for all m. By repeating this process in the directions 2, . . . ,D one finds

after a finite number of steps, either that L = u(1)p⊕L′ where p > 0 and L′ is semi-simple,

or ψ = 0 which we have assumed not to be the case.

We will analyse the two cases in turn, but we first establish some useful identities

arising from (2.3)–(2.5) that are valid in both cases. We define h = −κ i.e.

hmn = ψmabψn
ab . (2.9)
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First contract (2.3) with ψq4q5ℓ so that one obtains

φq1q2q3mhmℓ − φq4q2q3mψq5q1
mψq5q4ℓ − φq1q4q3mψq5q2

mψq5q4ℓ − φq1q2q4mψq5q3
mψq5q4ℓ = 0 .

(2.10)

However, note that the Jacobi identity implies that

φq4q2q3mψq5q1
mψq5q4ℓ =

1

2
φq2q3mnψrq1

ℓψrmn . (2.11)

Using this identity one can rewrite (2.10) as

φq1q2q3mhmℓ−
1

2
φq2q3mnψrq1

ℓψrmn−
1

2
φq3q1mnψrq2

ℓψrmn−
1

2
φq1q2mnψrq3

ℓψrmn = 0 . (2.12)

Also, contracting (2.3) with δq3q5
gives

φq1q2mnψq4
mn + φq2q4mnψq1

mn + φq4q1mnψq2
mn = 0 . (2.13)

Next, contract (2.4) with ψq1q2ℓ to obtain

−φq3q4q5mhmℓ + φq1q2q3mψq1q2ℓψ
q4q5

m − 2φq2q4q5mψq3q1
mψq1q2ℓ = 0 . (2.14)

This can be rewritten (using (2.11) to simplify the last term) as

−φq1q2q3mhmℓ + φmnq1rψmnℓψ
q2q3r + φq2q3mnψrq1

ℓψrmn = 0 . (2.15)

On contracting this expression with δq1q3
, the first and the third term vanish (the third

term vanishes as a consequence of the Jacobi identity), and we find

φn1n2m1m2ψn1n2ℓψm1m2r = 0 . (2.16)

Next, contract (2.15) with ψq2q3s. The last term vanishes as a consequence of (2.16), and

we obtain

−φmnqrhrℓψmns + φmnqrhrsψmnℓ = 0 . (2.17)

2.1 Solutions when L is semi-simple

We now assume that L is semi-simple. As we have already observed, we can make a rotation

and work in a basis for which

hmn = λnδmn (2.18)

(no sum over n), with λn > 0 for all n.

Then (2.17) implies

−φmnq
ℓλℓψmns + φmnq

sλsψmnℓ = 0 (2.19)

with no sum over ℓ or s. On substituting this expression back into (2.13) we obtain

(λq4
− λq1

− λq2
)φq1q2mnψq4

mn = 0 (2.20)

(no sum on q1, q2, q4). Hence φq1q2mnψq4
mn = 0, or λq4

− λq1
− λq2

= 0 for some choice of

q1, q2, q4. Now, it is not possible to have λq4
−λq1

−λq2
= λq1

−λq2
−λq4

= λq2
−λq1

−λq4
= 0

– 3 –
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simultaneously. Hence, at least one of φq1q2mnψq4
mn, φq1q4mnψq2

mn, φq2q4mnψq1
mn must

vanish. However, (2.19) then implies that all these terms vanish. Hence we conclude that

φq1q2mnψq4
mn = 0 (2.21)

for all q1, q2, q4. Finally, on substituting (2.21) back into (2.12), the last three terms are

constrained to vanish, hence

φq1q2q3q4
= 0 . (2.22)

Now consider (2.2). This implies that

ψ[q1q2q3ψq4]q5q6 = 0 (2.23)

which implies (see e.g. [20]) that ψ is simple i.e. it can be written as the wedge product of

three one forms. Hence one can chose a basis for which

ψ = λdx1 ∧ dx2 ∧ dx3 . (2.24)

Furthermore, as L is compact, this implies that L must be 3-dimensional i.e. L = su(2).

We have thus recovered the basic four-dimensional case with fµ1µ2µ3µ4 = ǫµ1µ2µ3µ4 .

2.2 Solutions when L is not semi-simple

Set L = u(1)p ⊕L′ where p > 0 and L′ is semi-simple. It will be useful to split the indices

m into “semi-simple” directions m̂ and “u(1)” directions A, so m = (m̂,A). Note that

ψAmn = 0 for all m,n, and hAm = 0 for all m, but hm̂n̂ = λn̂δm̂n̂ (no sum on n̂). Recall

the identity (2.12). Setting q1 = A, q2 = B, q3 = C one finds

φABCm̂ = 0 . (2.25)

Also, setting q1 = A, q2 = B, q3 = m̂ one finds

φABm̂ŝh
ŝℓ̂
−

1

2
φABp̂q̂ψŝm̂

ℓ̂
ψŝp̂q̂ = 0 . (2.26)

However, (2.13) implies that

φABp̂q̂ψŝp̂q̂ = 0 (2.27)

and so on substituting this back into (2.26) one finds

φABm̂n̂ = 0 . (2.28)

Returning to the general conditions (2.3), (2.4) and (2.5) with all free indices hatted, we

can follow the same steps in the last subsection to conclude that

φm̂n̂p̂q̂ = 0 . (2.29)

Thus the only non-zero components of φ are of the form φAq̂1q̂2q̂3 and φABCD.
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Considering other indices in (2.3), (2.4) and (2.5) we conclude that

ψ[q̂1q̂2

m̂ψ
q̂3]q̂4m̂ = 0 (2.30)

φAq̂1q̂2

m̂ψ
q̂3q̂4m̂ = φAq̂3q̂4

m̂ψ
q̂1q̂2m̂ (2.31)

φAq̂1[q̂2

m̂ψ
q̂3q̂4]m̂ = 0 . (2.32)

From (2.2) we also get

φ[A1A2A3
Bφ

A4]A5A6B = 0 (2.33)

φq̂1q̂2q̂3
Bφ

A1A2A3B = 0 (2.34)

φA[q̂1q̂2

m̂φ
q̂3]q̂4Bm̂ = 0 (2.35)

φq̂1q̂2

m̂[A1
φA2]

q̂3q̂4m̂ = 0 (2.36)

ψ[q̂1q̂2q̂3ψq̂4]q̂5q̂6 + φ[q̂1q̂2q̂3
Aφ

q̂4]q̂5q̂6A = 0 . (2.37)

To proceed with the analysis, it is convenient to define the matrices TA by

(TA)m̂
n̂ = φAq̂1q̂2n̂ψq̂1q̂2m̂ . (2.38)

On contracting (2.31) with δq̂2q̂4
, we observe that TA are all symmetric matrices. Further-

more, on contracting (2.36) with δq̂2q̂4
and making use of (2.31), it is straightforward to

show that the matrices TA commute with each other. Also, (2.31) implies that the TA

commute with h.

Next, note that the Jacobi identity (2.30) implies that

(TA)
m̂ℓ̂
ψℓ̂

p̂q̂ = φAŝt̂
m̂ψŝt̂ℓ̂

ψℓ̂
p̂q̂ = −2φAŝt̂

m̂ψŝp̂ℓ̂
ψℓ̂

q̂t̂ (2.39)

However, now using (2.31) and then the Jacobi identity again, we get

−2φAŝt̂
m̂ψŝp̂ℓ̂

ψℓ̂
q̂t̂ = −2φAŝ

p̂l̂
ψŝ

t̂
m̂ψ

l̂
q̂t̂ = −φAŝl̂

p̂ψŝl̂t̂
ψt̂

m̂q̂ . (2.40)

Thus

(TA)
m̂ℓ̂
ψℓ̂

p̂q̂ = −(TA)
p̂ℓ̂
ψℓ̂

m̂q̂ . (2.41)

Next, decompose semi-simple L′ = L1 ⊕ · · · ⊕Lm where Li are simple ideals such that

Li ⊥ Lj (with respect to h), and [Li,Lj] = 0 if i 6= j, and the restriction of the adjoint

rep. to Li is irreducible; furthermore, h|Li
= 2µ2

i I for µi 6= 0. Contract (2.31) with ψ
q̂3q̂4ℓ̂

to obtain

φAq̂1q̂2m̂h
m̂ℓ̂

= φAq̂3q̂4m̂ψq̂1q̂2
m̂ψq̂3q̂4ℓ̂

. (2.42)

Suppose that the indices q̂1, q̂2 lie in two different ideals Li,Lj for i 6= j. Then the r.h.s.

of the above expression vanishes, hence for these indices, φAq̂1q̂2m̂ = 0, for all m̂. Similarly,

for these indices (TA)q̂1

q̂2 = φAr̂ℓ̂q̂2ψ
r̂ℓ̂q̂1

= 0.

Consider TA
i , the restriction of TA to Li. Then (2.41) implies that TA

i commutes with

the restriction of the adjoint rep. to Li. However, as this restriction of the adjoint rep. is

irreducible, it follows by Schur’s Lemma that

TA
i = λA

i I . (2.43)
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As the TA all commute, this can be achieved for all TA.

Next, consider (2.37) with all q̂ indices restricted to Li. Contracting this expression

with ψq̂1q̂2q̂3
ψq̂5q̂6m̂ gives

(

∑

A

(λA
i )2 + 4(µi)

4

)

(dim Li − 3) δq̂4

m̂ = 0 (2.44)

which implies that dim Li = 3 for all i, so Li = su(2). It follows that

ψ =
∑

i

µiθi (2.45)

with µi 6= 0, where

θi = dy1
i ∧ dy2

i ∧ dy3
i (2.46)

If the q̂ indices are restricted to Li, since dim Li = 3, φAq̂1q̂2q̂3
must be proportional to θi.

The proportionality constant can be fixed from (2.43) and we find

φAq̂1q̂2q̂3
=
λA

i

2µi
(θi)q̂1q̂2q̂3

. (2.47)

It is convenient to re-define λA
i = 2µiχ

A
i , so that

f = dxd+1 ∧ ψ +
∑

i,A

χA
i dz

A ∧ θi + Φ (2.48)

where Φ lies entirely in the u(1) directions, whose directions we have denoted by zA.

The remaining content of (2.37) is obtained by restricting the indices q̂1, q̂2, q̂3 to Li, and

q̂4, q̂5, q̂6 to Lj for i 6= j; we find

µiµj +
∑

A

χA
i χ

A
j = 0 . (2.49)

Note that the form Φ satisfies the quadratic constraint (2.33), whereas (2.34) is equivalent to

χA
i ΦAMNP = 0 (2.50)

for all i.

There are then two cases to consider. In the first case, χA
i = 0 for all A, i. Then (2.49)

implies that L′ = su(2), and hence

f = µ1dx
d+1 ∧ dy1

1 ∧ dy2
1 ∧ dy3

1 + Φ (2.51)

where Φ has no components in the xd+1, y1
1 , y

2
1 , y

3
1 directions.

In the second case, there exists some A, i with χA
i 6= 0. Without loss of generality,

take i = 1. By making an SO(p) rotation entirely in the u(1) directions, without loss of

generality set

χ1
1 = τ, χA

1 = 0 if A > 1 (2.52)

– 6 –
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where τ 6= 0. Then, if j 6= 1, (2.49) implies that

χ1
j = −

µ1

τ
µj . (2.53)

Substituting these constraints back into (2.48), and rearranging the terms, one finds

f =
(

µ1dx
d+1 + τdz1

)

∧ θ1 + τ−1
(

τdxd+1 − µ1dz
1
)

∧
∑

j>1

µjθj

+
∑

j>1,A>1

χA
j dz

A ∧ θj + Φ . (2.54)

Writing

f1 =
(

µ1dx
d+1 + τdz1

)

∧ θ1

f̃ = τ−1
(

τdxd+1 − µ1dz
1
)

∧
∑

j>1

µjθj +
∑

j>1,A>1

χA
j dz

A ∧ θj + Φ (2.55)

we have found f = f1 + f̃ where, as a consequence of (2.50) and (2.52), it follows that Φ

has no components in the z1 direction.

So, in both cases, we have the decomposition

f = f1 + f̃ (2.56)

where f1 is a simple 4-form, and f1, f̃ are totally orthogonal i.e. fµ1µ2µ3ν
1 f̃µ4µ5µ6

ν = 0.

Having obtained this result, it is straightforward to prove that if such an f satis-

fies (1.2), then

f =

N
∑

s=1

fs (2.57)

where fs are totally orthogonal simple 4-forms. The proof proceeds by induction on the

spacetime dimension D (D ≥ 4). The result is clearly true for D = 4. Suppose it is true

for 4 ≤ D ≤ d. Suppose that D = d + 1. Then by the previous reasoning, one has the

decomposition f = f1 + f̃ , where f1 is a simple 4-form, and f1, f̃ are totally orthogonal.

It follows that f̃ must satisfy (1.2). Then either f̃ = 0 and we are done, or f̃ is a nonzero

4-form in dimension d− 3, in which case it follows that one can decompose f̃ into a finite

sum of orthogonal simple 4-forms, each of which is also orthogonal to f1.

Hence we conclude that the decomposition (2.57) holds for all 4-forms f satisfying (1.2).

3. Discussion

Given the results presented here, the maximally supersymmetric field theory Lagrangian

based on the four-dimensional algebra with fµ1µ2µ3µ4 = ǫµ1µ2µ3µ4 is rather enigmatic. If

it is not to be an isolated curiosity, the assumptions going into the general constructions

of [3 – 5] need to be relaxed. One possibility is to relax the condition that the metric living

on the algebra is positive definite and some discussion recently appeared in [16]. A different

possibility is to not demand a Lagrangian description, but to work instead at the level of

the field equations and this was recently discussed in [15]. Another possibility, which also

does not use totally antisymmetric structure constants, was considered in [12].
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